Hall Conditions for Edge-weighted Bipartite Graphs
نویسندگان
چکیده
A weighted variant of Hall’s condition for the existence of matchings is shown to be equivalent to the existence of a matching in a lexicographic product. This is used to introduce characterizations of those bipartite graphs whose edges may be replicated so as to yield semiregular multigraphs or, equivalently, semiregular edge-weightings. Such bipartite graphs will be called semiregularizable. For example, Hall’s theorem guarantees the existence of a spanning (1, 1)-semiregularizable forest (i.e., a perfect matching) while a p/q rational variant of Hall’s theorem guarantees a spanning (p, q)-semiregularizable forest. Some infinite families of semiregularizable trees are described and all semiregularizable trees on at most 11 vertices are listed. Matrix analogues of some of the results are mentioned and are shown to imply some of the known characterizations of regularizable graphs.
منابع مشابه
On Edge-Decomposition of Cubic Graphs into Copies of the Double-Star with Four Edges
A tree containing exactly two non-pendant vertices is called a double-star. Let $k_1$ and $k_2$ be two positive integers. The double-star with degree sequence $(k_1+1, k_2+1, 1, ldots, 1)$ is denoted by $S_{k_1, k_2}$. It is known that a cubic graph has an $S_{1,1}$-decomposition if and only if it contains a perfect matching. In this paper, we study the $S_{1,2}$-decomposit...
متن کاملWeighted coloring on planar, bipartite and split graphs: Complexity and approximation
We study complexity and approximation of min weighted node coloring in planar, bipartite and split graphs. We show that this problem is NP-hard in planar graphs, even if they are triangle-free and their maximum degree is bounded above by 4. Then, we prove that min weighted node coloring is NP-hard in P8-free bipartite graphs, but polynomial for P5-free bipartite graphs. We next focus on approxi...
متن کاملOn Bipartite and Multipartite Clique Problems
In this paper, we introduce the maximum edge biclique problem in bipartite graphs and the edge/node weighted multipartite clique problem in multipartite graphs. Our motivation for studying these problems came from abstractions of real manufacturing problems in the computer industry and from formal concept analysis. We show that the weighted version and four variants of the unweighted version of...
متن کاملSolving the Weighted Efficient Edge Domination Problem on Bipartite Permutation Graphs
Given a simple graph G = (V, E), an edge (u, u) E E is said to dominate itself and any edge (u,x) or (u,x), where x E V. A subset D C E is called an efficient edge dominating set of G if all edges in E are dominated by exactly one edge of D. The efficient edge domination problem is to find an efficient edge dominating set of minimum size in G. Suppose that each edge e E E is associated with a r...
متن کاملEdge Coloring and Decompositions of Weighted Graphs
We consider two generalizations of the edge coloring problem in bipartite graphs. The first problem we consider is the weighted bipartite edge coloring problem where we are given an edge-weighted bipartite graph G = (V, E) with weights w : E → [0, 1]. The task is to find a proper weighted coloring of the edges with as few colors as possible. An edge coloring of the weighted graph is called a pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010